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ABSTRACT 

Most adjoint-based optimization frameworks only     
consider aerodynamic performance and constraints, leading      
to designs that need to pass through revisions by structural          
requirements. Only in recent years, adjoint optimization       
frameworks have been extended to include structural       
constraints. These frameworks also make use of CAD-based        
parametrizations to maintain a connection to the master CAD         
geometry and to serve as the connection between the fluid          
and solid domains. 

 
In this work, a CAD-based adjoint multidisciplinary       

optimization framework for turbomachinery components is      
presented. A CAD-based parametrization is used for defining        
the shape freedom, from which the fluid and solid grids are           
generated, and a Reynolds-Averaged Navier-Stokes solver is       
used to compute the efficiency. The maximum von Mises         
stress is computed using a linear stress solver based on the           
Finite Element Method. The CFD and stress solvers each         
have adjoint capabilities, permitting an efficient computation       
of gradients at a cost independent of the size of the design            
space. 

 
An adjoint optimization of a radial turbine is performed         

with the objective of maximizing the aerodynamic efficiency        
while adhering to the structural constraints. Results show that         
within a reduced design time an aerodynamic optimal design         
can be achieved whilst keeping the mechanical stresses        
within range of the prescribed tolerance. 

INTRODUCTION 
In the field of turbomachinery, multidisciplinary      

optimizations (MDO’s) have been widely applied using       
gradient-free optimization methods. These methods are      
straightforward to implement due to their non-intrusive       
nature of not requiring any source code access. However,         
gradient-free methods require a high number of iterations to         
converge towards an optimum and the design space is limited          
by the curse of dimensionality, i.e., the computational effort         
increases exponentially with respect to the number of design         
parameters. Alternatively, gradient-based optimization    
methods use gradient information to converge towards a        
local optimum, typically with less iterations while allowing        
larger degrees of freedom. However, this requires computing        
the gradient of the objective with respect to the design          
parameters. 

 
The required gradient can traditionally be computed       

using a non-invasive approach such as finite differences        
(FD). However, the cost of using FD is also proportional to           
the number of design parameters : evaluations for 1st     n  n + 1     
order FD and evaluations for 2nd order FD. The adjoint   n2         
method (Pironneau, 1974; Jameson, 1988) allows a gradient        
calculation at a cost proportional to the number of objectives,          
rather than the number of design parameters. Since the         
number of objectives is generally much less than the number          
of design parameters, this significantly speeds up the        
gradient computation, and as a result, the optimization. 
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State of the art adjoint optimizations in turbomachinery        
focus on aerodynamic cost functions and constraints (Wang        
and He, 2010; Walther and Nadarajah, 2013; Luo et al.,          
2014). Only recently have adjoint MDO’s been extended to         
include structural constraints (Verstraete et al., 2017).       
Including these constraints within a CAD-based adjoint       
MDO framework enables the efficient design of geometries        
that are not only aerodynamically optimal, but also        
structurally feasible. In this work, the adjoint MDO        
framework CADO (Verstraete, 2010) of the von Karman        
Institute for Fluid Dynamics is used to optimize the         
efficiency of a radial turbine under structural constraints. 

 
First, the adjoint MDO framework will be briefly        

presented. This will be followed by a discussion of the          
numerical setup, including the flow and structural solvers        
and the optimization method. Finally, the optimization       
results are discussed. 

 

ADJOINT MULTIDISCIPLINARY OPTIMIZATION FRAMEWORK 
The optimization begins with CAD parameters      α ∈ ℝ

n 

that are used to describe the geometry (figure 1). The number           
of CAD parameters is defined by . A CAD-based approach      n     
is chosen to give users the possibility of imposing         
geometrical constraints for an optimization. Geometrical      
constraints can be used to define e.g. constraints on a shape’s           
curvature for manufacturing purposes. Additionally, the      
CAD surface serves as the interface between the structured         
mesh of the fluid domain and the unstructured mesh of the           
solid domain. The CAD parameters are used as inputs to     α       
the CAD kernel which generates the geometry. 

 
Based on the CAD geometry, a structured mesh is         

generated for the CFD calculation and an unstructured mesh         
is generated for the structural solver. Following the mesh         
generation, CFD and CSM analyses are carried out to         
compute the performance parameters of interest These      .y  
include the efficiency and the maximum von Mises stress   η        

for the fluid and structural disciplines, respectively. σmax        
The performance parameters are then used to define an         
objective  which is to be minimized.,J  

 
Discrete adjoint implementations of the CFD and CSM        

solvers, combined with forward differentiated     
implementations of the CAD kernel and mesh generation,        
allows an efficient calculation of the sensitivities of        Jα ∈ ℝn  
the objective function with respect to the CAD design         
parameters. A more detailed discussion of this framework        
can be found in (Verstraete et al., 2017). 

 
Previous work used the open-source structural solver       

Calculix (Dhondt and Wittig, 1998) and an inverse distance         
interpolation for the structural grid generation (Verstraete et        
al., 2017). In this paper, an in-house adjoint structural solver          
is used, which is also used to morph the unstructured grid           
using a linear elastic analogy. Compared to the inverse         

distance method, the linear elastic analogy has shown to         
require less remeshing for this radial turbine geometry.  

Figure 1 Flowchart of Multidisciplinary Framework 
in CADO (CAD-based Optimization), in-house 

optimization code of the von Karman Institute for 
Fluid Dynamics 

Numerical Setup 
The numerical setup for this optimization is based on the          

same setup as in (Verstraete et al., 2017), which will be           
briefly summarized in this section. 

 
An adjoint MDO of a radial turbine is performed, using          

CAD design parameters to modify the geometry. In total,         
design parameters are defined for the optimization.4n = 2         

11 design parameters are used to define the shape of the           
meridional passage (figure 2), 12 parameters define the blade         
angle distribution from leading to trailing edge of the hub          
and shroud (figure 3), and one parameter is used for the           
trailing edge cut back definition (figure 4). 
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Figure 2 Parametrization for Meridional Shape of 
Turbine Wheel 

Figure 3 Parametrization for Blade Angle 
Distribution from Leading to Trailing Edge. Top: 

Hub. Bottom: Shroud 
 

The master CAD geometry is generated based on the         
CAD design parameters and serves as the reference for the          
generation of the structured grid for the fluid domain and the           
unstructured grid for the solid domain (figure 5). The fluid          
domain is analyzed by solving the Reynolds-Averaged       
Navier-Stokes (RANS) equations on a multi-block structured       
grid and the solid domain is analyzed by solving the linear           
elastic equations using the finite element method (FEM) on         
an unstructured grid. Instead of using the open-source solver         
Calculix (Dhondt and Wittig, 1998) and an inverse-distance        
interpolation for the unstructured mesh deformation, an       
in-house structural solver is used for the stress analysis, as          
well as unstructured mesh deformation. 

 

Figure 4 Parametrization for Trailing Edge Cut Back 

Figure 5 Orange: Structured Grid for Fluid Analysis. 
Green: Unstructured Grid for Solid Analysis. 

Flow Solver 
The RANS flow solver used in this optimization is based          

on the cell-centered finite volume method, using a        
multi-block structured grid. An implicit time integration       
scheme with local time-stepping and geometric multigrid is        
used to converge towards a steady-state solution. Roe’s        
approximate Riemann solver (Roe, 1981) is used to compute         
the inviscid fluxes. Second order accuracy is achieved using         
a MUSCL reconstruction (Van Leer, 1979) of the primitive         
variables. A van-Albada type limiter (Venkatakrishnan,      
1993) is used to reduce shock oscillations and numerical         
dissipation is handled by the entropy correction of Harten         
and Hyman (Harten and Hyman, 1983). A central        
discretization scheme is used to compute the viscous fluxes.         
The negative Spalart-Allmaras turbulence model (Allmaras      
et al., 2012), assuming a fully turbulent inflow is used for the            
turbulence closure problem. More details on the flow solver         
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and its discrete adjoint implementation can be found in         
(Mueller and Verstraete, 2017). 

Structural Solver 
The structural solver used in this optimization is an         

in-house structural FEM solver, written in C++. The linear         
elastic equations are discretized on an unstructured grid of         
quadratic tetrahedral elements. The resulting linear system of        
linear elasticity is solved by iterative solvers provided by the          
Eigen library (Guennebaud et al., 2010), while the        
generalized eigenvalue problem of the vibration analysis is        
solved using the SLEPc library (Hernandez et al., 2005).  

Figure 6 Distribution of von Mises Stress σ  

Figure 7 Sensitivities of Maximum von Mises stress 
with Respect to Node Coordinates |

|
|
|
|
| ∂xi
∂σmax ||

|
|
|
|
 

 
The discrete adjoint model (Schwalbach et al., 2016)        

was implemented using the open-source algorithmic      
differentiation (AD) tool CoDiPack (Sagebaum et al., 2017).        
The differentiation of the linear system assembly and cost         
function evaluation are straightforward. However, the linear       
system solver requires special treatment. A black-box       

approach would cause its adjoint to use the same number of           
iterations and the same Krylov subspace. This may lead to          
wrong results, which will propagate through the adjoint        
model and influence the gradients. To avoid this, the adjoint          
model is treated in such a way that another linear system is            
setup to solve to for the adjoint variables (Tadjouddine et al.,           
2006). Due to the symmetric positive definiteness of the         
stiffness matrix, the same system matrix is used to solve the           
primal and adjoint linear systems (Schwalbach et al., 2017). 

 
A forward and reverse (adjoint) run of the structural          

solver delivers the maximum von Mises stress (figure 6), as          
well as the required structural gradients (figure 7). This         
requires a computational cost of approximately two linear        
system solves using the same stiffness matrix, which        
corresponds to a cost of 2.1 times the primal solver run time.            
The solver has previously been used to successfully perform         
an adjoint structural optimization of a radial turbine        
geometry using a linear elastic mesh deformation.  

Solid Mesh Deformation 
The mesh deformation uses a hierarchical approach       

based on the CAD geometry to ensure conformity between         
the unstructured mesh and the updated CAD. First, the nodes          
found along the edges of the outer mesh are displaced          
according to the morphed CAD edges. Since the CAD edges          
are described by a B-spline curve, this is solved using a           
linear spring analogy in parametric space (figure 8). The         
remaining outer nodes are then displaced according to the         
morphed CAD surfaces. Analogously to the first step, the         
CAD surface is defined by B-spline surfaces, allowing a         
solution in parametric space using an inverse distance        
interpolation (figure 9). Using the outer node displacements        
as boundary conditions, the inner mesh nodes are then solved          
for using the linear elastic FEM solver (figure 10). 

Figure 8 Morphing of Edge Nodes in Parametric 
Space 
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Figure 9 Morphing of Surface Nodes in Parametric 
Space 

 

Figure 10 Morphing of Inner Mesh Points Based on 
Surface Node Displacements 

Optimization Method 
A steepest descent optimization method of the form 
 

 αi+1 = αi − λ ° dα
dJ

(1)   
 

is used, where the CAD parameters are used as the design      α      
parameters that modify the shape of the radial turbine. The          
step sizes for the different parameters are defined in the          
vector and the operator represents the Hadamard   λ ∈ ℝn    °      
product such that 

 

 ​(2).  λ ° dα
dJ = λ , .. ,( 0 · dJ

dα0
. λn−1 · dJ

dαn−1

  )T

 

Usually, a scalar step size is used in a steepest descent           
algorithm. However, a vector of different step sizes is         
required due to different units being used for the individual          
CAD parameters .α  
 
 
 
 

 
The total to static efficiency 

 

ηTS =
−1T0,1

T0,2

−1( p2
p0,1)

γ
γ−1 (3) 

 
is selected as the performance parameter from the fluid         

domain. The subscript 1 denotes the inlet and 2 denotes the           
outlet of the fluid domain. Total pressure and total         
temperature are referred to by subscript 0. As a structural          
constraint from the solid domain, the maximum von Mises         
stress is required to be under a defined threshold σmax          .σreq
To ensure a smooth and differentiable maximum von Mises         
stress function, it is computed as the - normp  

 

 σmax = √p ∑
m−1

i=0
σip (4) 

 
over the FEM nodes. In this optimization, The  m       0.p = 5   
design goal and constraint are combined to formulate a single          
objective function which must be minimized. The objective        
function is defined as 

 
,  J = (1 )− ηTS + ω · S (σ )max · (σ )max − σreq 2

(5) 
 

where is a penalty weight and the magnitude of the  ω           
right-hand penalty term is controlled by the sigmoid-like        
function 

 
,  S (σ )max = 1

1+e− σ −σ( max req) (6) 
 

such that the penalty term smoothly reduces if the constraint          
is satisfied and increases otherwise. The  (σ )max < σreq      
left-hand term of the objective function represents the goal of          
increasing efficiency. 

 
In this work, a two-step optimization is performed. First,         

a coarse CFD mesh with around 750,000 mesh points is used.           
This is done to achieve an improved design within a short           
time frame. Starting at the 25th iteration, a finer mesh with           
around 1.4 million points is used to further improve the          
design with a higher numerical accuracy. 

OPTIMIZATION RESULTS 
Figure 11 shows the evolution of the objective function         

, efficiency , and maximum von Mises stressJ   ηTS       
throughout the optimization. The first 24 design iterations        
were performed using a coarser CFD mesh with around         
750,000 mesh points. Wall clock run time for the first 24           
iterations is around 3.5 days (84 hours), resulting in a 2.77%           
efficiency improvement.  
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 Baseline Optimal 

Efficiency −]  [  0.746 0.776 

Power W ][  1253.485 1377.786 

Inlet Mass Flow ][ s
g  101.505 101.505 

Outlet Mass Flow ][ s
g  101.495 101.495 

 
Table 1 Value Comparison Between Baseline and 

Optimal Geometries 

Figure 11 Blue: Evolution of Objective Function ,J  
Efficiency , and Maximum von Mises StressηTS  

. Orange: Stress Threshold σmax σreq  
 
At iteration 25, a finer CFD mesh with approximately         

1.4 million mesh points is used until iteration 40, taking an           
additional 4 days (96 hours) to increase the efficiency         
further, resulting in a total improvement of 3.97%. Due to the           
higher accuracy, there is a sudden jump at this iteration in           
figure 11. The resulting maximum von Mises stress is within          
range of the defined constraint 60 MPa.σreq = 6   

 
Changes in the parameters that describe the blade angle         

distribution and meridional shape are exhibited in figures 12         
and 13, where the control points are shown as well.          
Especially in the meridional plot, the differences between the         
baseline and optimal shapes are evident. The shape of the          
hub remains virtually unchanged while the shroud has been         
adjusted significantly. The inlet is slightly reduced, while the         
outlet is expanded as the blade is straightened in order to           
improve the total-to-static efficiency. The resulting initial       
and optimal geometries are shown in figures 14 and 15,          
respectively. 

 
Additionally, the power has increased by 9.92%, because        

no aerodynamic constraint was imposed in the present        
optimization (table 1). A prescribed mass flow boundary        

condition is used to ensure that the mass flow at the inlet and             
outlets remain constant throughout the optimization. No       
remeshing was required for the solid mesh during the entire          
optimization. 

 
The primal and adjoint CFD simulations are run in         

parallel on 6 Intel i7-4790K cores for optimal        
load-balancing. The forward-differentiated mesh generation     
and the adjoint structural solver are both executed on 8 cores. 

 

Figure 12 Blade Angle Distribution and 
Parametrization. Red: Baseline. Blue: Optimal 

 

Figure 13 Meridional Shape and Parametrization. 
Red: Baseline. Blue: Optimal 
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Figure 14 von Mises Stress Distribution of Initial 
Geometry 

 

Figure 15 von Mises Stress Distribution of 
Optimized Geometry 

CONCLUSION 
This paper has introduced a CAD-based adjoint       

multidisciplinary optimization framework for    
turbomachinery components. An adjoint optimization of a       
radial turbine geometry was performed in two phases. The         
first phase used a coarser CFD mesh to achieve an efficiency           
improvement of 2.77% within 3.5 days. The second phase         
used a finer CFD mesh to further drive the improvement of           
efficiency up to 3.97% within an additional 4 days. The ηTS           
optimal geometry satisfies the structural constraints of       
keeping the maximum von Mises stress within the region of          
the threshold  and the power increased by 9.92%.σreq   

 
Future work will integrate an adjoint vibration analysis        

into the MDO framework to perform an adjoint MDO under          
the structural constraints of stress, as well as vibration. 

NOMENCLATURE 
m number of FEM nodes 
n number of design parameters 
p pressure 
y performance parameters 
J objective 

 S sigmoid function 
T temperature 
α design parameters 
γ heat capacity ratio 
η efficiency 

 λ step sizes 
σ von Mises stress 

 ω penalty weight 
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